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Abstract: Poor air quality has been a major urban environmental issue in large high-density cities
all over the world, and particularly in Asia, where the multiscale complex of pollution dispersal
creates a high-level spatial variability of exposure level. Investigating such multiscale complexity and
fine-scale spatial variability is challenging. In this study, we aim to tackle the challenge by focusing on
PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 µm,) which is one of the most
concerning air pollutants. We use the widely adopted land use regression (LUR) modeling technique
as the fundamental method to integrate air quality data, satellite data, meteorological data, and spatial
data from multiple sources. Unlike most LUR and Aerosol Optical Depth (AOD)-PM2.5 studies, the
modeling process was conducted independently at city and neighborhood scales. Correspondingly,
predictor variables at the two scales were treated separately. At the city scale, the model developed
in the present study obtains better prediction performance in the AOD-PM2.5 relationship when
compared with previous studies (R2 from 0.72 to 0.80). At the neighborhood scale, point-based
building morphological indices and road network centrality metrics were found to be fit-for-purpose
indicators of PM2.5 spatial estimation. The resultant PM2.5 map was produced by combining the
models from the two scales, which offers a geospatial estimation of small-scale intraurban variability.

Keywords: PM2.5; spatial variability; geographic information system; multiscale; multi-source datasets

1. Introduction

Poor air quality has been a major urban environmental issue in cities, especially those
large and compact cities in Asia, for the last several decades [1]. Urbanization alters the
local climate, thus contributing to ambient air pollution levels in cities [2]. The interaction
between the urban environment and air pollution dispersion is a complex multiscale
mechanism [3]. The spatial scales of atmospheric pollution can range from a few hundred
meters for urban street canyons to a few hundred kilometers for a whole Megalopolis [4].
At the mesoscale, the spatial layout of artificial urban land cover types changes the near-
surface aerodynamic roughness, which interacts with the atmospheric circulation, and
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consequently, alters the transportation of air pollutants [5]. At the city scale, urban land
use planning changes the spatial distribution of the emission sources of air pollutants.
As a result, the air quality situation in large cities is not homogenously distributed. A
spatially heterogeneous urban environment (different combinations of building density and
functions, road network, open space, etc.) makes the concentration levels of air pollutants
vary from place to place [6]. At the neighborhood scale, the geometrical shapes of building
clusters, street canyons, the arrangement of street trees, and vegetation are all influential
factors of street-level air quality [7,8]. The above multiscale phenomenon creates a high-
level spatial variability of pollution exposure levels in the urban environment. Therefore,
investigating the multiscale complexity and fine-scale spatial variability of air pollution is
challenging [9].

There are two types of air pollution modeling methods—deterministic and statisti-
cal [10]. Deterministic methods (numerical and computational modeling) are most com-
monly used in the modeling of mesoscale or city-scale air pollution. In the last few decades,
various numerical and computational models have been developed from the perspective
of atmospheric chemistry and physics [11,12]. Most of the Lagrangian and Eulerian grid
dispersion models provide hourly-resolved fine temporal resolution but at a coarse spatial
resolution of several kilometers [13,14]. Computational fluid dynamics (CFD) enables the
accurate simulation of the movement of air pollutants at a very fine spatiotemporal scale.
CFD is mostly used for air pollution investigation in street canyons [15] or city blocks [16] as
it can only cover a limited spatial extent due to the high demands for computational powers
and time costs. However, for air quality management and health risk assessment nowadays,
the air pollution data needs to have both a relatively large spatial extent (i.e., an entire city)
and a sufficiently high spatial resolution (sometimes, with a grid cell size of fewer than one
hundred meters) to adequately capture small-scale intraurban spatial variability [17]. With
geographical information systems (GIS), statistical methods offer data with a finer spatial
resolution to help cater to the above need.

Statistical methods employ and combine in-situ monitored data from various sources,
which can provide concise and quantitative information on spatiotemporal variability. Most
of the routine air quality monitoring networks have long-term air quality data at an hourly-
resolved temporal scale. Mobile monitoring techniques based on portable sensors capture
fine-scale spatial variability [18,19]. AOD-ground-level PM2.5 correlation analysis is also
a popular method [20,21] as the Satellite-derived aerosol observations provide extensive
spatial coverage and temporal continuity [22]. Land-use regression (LUR) models from
exposure science research provide fit-for-purpose predictions on long-term concentration
at a fine spatial scale [23–26]. By combining the above data sources and techniques, stud-
ies on the development of exposure models have been conducted and show promising
results [27,28]. Moreover, developing multiscale exposure models is also found to be a
feasible way of capturing the intraurban spatial variability in air pollution distribution [29].
Such models can estimate air pollution concentration levels for large-scale spatial coverage
while capturing small-scale spatial variability, which not only provides useful information
on spatial exposure but also enables a quantitative understanding of the multiscale influ-
ence of urbanization on air pollution dispersion in cities. In addition, it also helps with the
identification of influential factors of intraurban spatial variability of air pollution. In this
study, aiming at tackling this multiscale complexity in the spatial variability of air pollution
affecting pedestrians’ exposure levels, we propose a multiscale LUR model and offer a
geospatial estimation of small-scale intraurban variability of air pollution. Particularly, we
focus on exposure to PM2.5 (particulate matter with an aerodynamic diameter of less than
2.5 µm). A geospatial approach—multiscale LUR modeling that combines various types
of multiscale data sources was adopted to estimate the intraurban spatial variability of
PM2.5 exposure in the compact built environment using the city of Hong Kong as a study
area. Unlike most LUR and AOD-PM2.5 studies, the modeling process was conducted
independently at city and neighborhood scales. Correspondingly, predictor variables at the
two scales were treated separately. Moreover, point-based building morphological indices
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and road network centrality metrics were also examined in the modeling process, which is
rare in other existing LUR studies.

2. Materials and Methods
2.1. Study Area

Hong Kong (Figure 1), a highly urbanized large city with serious air pollution, was
selected as the testbed city for developing multiscale LUR models of PM2.5 exposure. Hong
Kong is one of the world’s most compact cities with a large population of over seven
million people living in a total land area of 1100 km2. Its population density is around
6700 persons/km2. Like most other large cities in the world, Hong Kong also has air
pollution issues. The highly complex and diverse urban environment makes Hong Kong
an ideal study area for the development of multiscale LUR models.
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Figure 1. The air quality monitoring network, weather stations for wind measurement, and site
selection in this study.

2.2. PM2.5 and AOD Data
2.2.1. Satellite-Derived AOD Data at City Scale

In this study, MODIS Multi-Angle Implementation of Atmospheric Correction (MA-
IAC) AOD (MCD19A2) was used to represent the spatial distribution of surface PM2.5
concentration over the study area corresponding to the period of ground monitoring
and sampling (described in Sections 2.2.2 and 2.2.3). Compared with the 3-km MODIS
product [30], MAIAC has a satisfying accuracy at a finer spatial resolution (1-km) and
higher spatial coverage of retrieval [31]. Therefore, MAIAC AOD is more suitable for
air quality studies, notably, it is better at providing details of fine-scale aerosol charac-
teristics over study areas with heterogeneous geographic context. A QA filter should
be applied to select the best-quality MAIAC AOD data [31]. Most applications use the
filter of QA.CloudMask = “Clear” in order to ensure a high quality of the retrieved AOD.
However, it has been identified that in some locations with high spatial aerosol variability,
this filter may systematically erase AOD retrievals in cloud-free conditions over certain
urban areas [32]. In such cases, the following filters to define high-quality AOD retrievals:
QA.CloudMask = “Clear” or “Possibly cloudy”. Furthermore, pixels with the filter of QA
for AOD = “AOD within ±2 km from the coastline” were also included to extend the spatial
coverage of prediction, as there are major urban built-up areas in Hong Kong within 2 km
from the coastline (can be seen in Figure 1). MAIAC jointly processes MODIS Terra and
Aqua sensors as a single sensor due to the Terra-to-Aqua cross-calibration of the entire
C6 MODIS data collection [33]. In the data collection, most daily files contain multiple
orbit overpasses for combined Terra and Aqua. Data from Aqua and Terra were combined
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and averaged to provide an estimation of the daily average AOD value [34]. Chemical
transport models, AOD validation, and inter-comparison commonly use the input which is
standardized to 0.55 µm [35]. Therefore, to keep the consistency, AOD retrieved at 0.55 µm
was selected by this study.

2.2.2. Long-term PM2.5 Monitoring Data at City Scale

During the study period (years 2018 and 2019), data from a total of 16 stations were
available in the local air quality monitoring network in the study area (Figure 1). The
stations in the network are located at representative places that cover various combinations
of land use, road traffic network, natural topography (information shown in Table S1 of
the Supplementary Materials). These stations are operated and regularly maintained by
the local authority—Hong Kong Environmental Protection Department (HKEPD). The
data archive of the hourly concentration level of PM2.5 is openly available to the public.
The monitoring data from the network are readily comparable to air quality data from
other cities, as the network has been recognized by the United Nations Environmental
Programme (UNEP) and complies with international standards [36]. Therefore, we selected
this data source for investigating the city-scale spatial variability of PM2.5.

2.2.3. In-Situ PM2.5 Sampling at Neighborhood Scale

Sampling site selection: The city of this study is a large city with a compact and
complex urban environment. The spatial variability in air pollution affecting pedestrians’
exposure levels in such a spatially heterogeneous city context cannot be fully represented
by the sparsely located 16 air quality stations operated in the local air quality monitoring
network. Therefore, this study selected ten study sites for air pollution sampling based
on not only land use and natural topography but also district block function, building
density and morphology, and road network layout. The ten sampling sites selected are
representative of the diverse urban contexts of Hong Kong. The details of the ten selected
sites are shown in Table S2 of the Supplementary Materials.

Sampling routes: The present study adopted a PM2.5 sampling method which was
tested in a previous pilot study on small-scale spatial variability of pedestrian level par-
ticulate matter in three downtown commercial districts [37]. To investigate the spatial
variability of PM2.5 exposure levels, one person kept strolling and rambling in a selected
site area at a common pedestrian walking speed of 3 km/h (0.8 m/s) [38] with a backpack
sampling unit (see the next paragraph—Sampling instrumentation). The sampling routes
are shown in Figure S1 of the Supplementary Materials.

Sampling instrumentation: The instrument used in the previous study is an all-in-one
backpack sampling unit assembled by combining various monitors and sensors. In the
present study, the instrument was further improved, becoming smaller in size and more
lightweight. The concentration levels of PM2.5 were continuously monitored using the TSI
SidePakTM personal aerosol monitor AM520 (a more portable laser-scattering device that is
dedicatedly designed for assessing personal exposure to PM) instead of the DUSTTRAKTM

model 8534 monitor. The AM520 was set to sample and log PM2.5 concentration data
with the time interval of 1 s (with this sampling interval, the spatial interval of sampling
data points was approximately 1 m which is a fine resolution for spatial mapping and
exposure assessment). A sample extension tube was connected to the inlet of AM520 to
extend the inlet to the height of 1.6 m above the ground. During the measurement, the
person who carried the backpack sampling unit stayed away from any random pollution
sources nearby (e.g., smoking people, roadside vendors) in order to minimize random noise
introduced in the data. Ambient air temperature (Ta, ◦C) and relative humidity (RH, %)
were synchronously sampled by a set of Testo 480 data logger and humidity/temperature
probe. The RH data were used for the sampled PM2.5 data calibration. The AM520 sampled
data were corrected using synchronously sampled RH based on the following equation [39]:

Correction Factor = 1 + 0.25
RH2

(1 − RH)
(1)
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The Global Positioning System (GPS) receiver was used to label the geolocation of
each sample in the WGS 1984 coordinate system. The data logging time stamps were
synchronized to Coordinated Universal Time (UTC).

Sampling periods: During the warm season (May to September) of Hong Kong, local
emission sources dominate the local condition of PM2.5 [40], which minimizes the over-
whelming effects of high background concentration levels caused by the long-distance
transport of non-local emission sources. Therefore, in-situ measurements were conducted
during the warm season (May to September) of the year 2018 and 2019 (the measurement
date are shown in Table S2 of the Supplementary Materials). This experimental design sim-
ulated a scenario of typical city pedestrians’ outdoor activities. The sampling campaign was
conducted in three different time slots (9 a.m.–11 a.m., 2 p.m.–4 p.m., and 7 p.m.–9 p.m.)
each day to cover different periods and situations of traffic and human activities in a day.
To investigate the spatial variability, day-to-day and hour-to-hour temporal variation in the
measurement, data were adjusted based on the background air quality monitoring station
of Hong Kong using the adjustment method that has been tested and adopted in a previous
study of vehicle-based mobile measurement [41].

2.3. Spatial and Temporal Predictor Data

In this study, multiple data sources were collated to a predictor variables dataset for
the multiscale LUR modeling process. Table 1 summarizes the predictor variables and the
corresponding data sources used in the multiscale LUR modeling of this study.

Table 1. Summary of the predictor variables and the corresponding data sources used in the multiscale
LUR modeling in the present study.

Data Type Predictor Variables Unit Abbr. Raw Data Source Spatial Scale

Weather data

Air temperature ◦C TEMP

Historical records are publicly
accessible from local

authorities of weather
monitoring—Hong Kong

Observatory (HKO)

Temporal-resolved
variable with

city-scale spatial
variability

Relative humidity % RH

Wind speed m/s WSPD

Rainfall mm RF

Mean sea level
pressure hPa MSLP

Atmospheric soundings Sounding indices examined in this study are listed in
Table S3 of the Supplementary Material Wyoming Weather Web Temporal variable

Land use
(Areal fraction of the land use
type within certain circular

buffer range 1)

Residential land % RES

Derived from the open data
from the Planning

Department of Hong Kong
(PlanD)

City scale

Commercial land % COM

Industrial land % IND

Government land % GOV

Open space land % OPN

Greening cover ratio % GCR Calculated based on
above data City scale

Geolocation of air quality
monitoring stations and

weather stations

Longitude degree LONG

The GeoInfo Map of
Hong Kong City scaleLatitude degree LAT

Elevation above sea
level m ELEV

Population Population density 1 People/km2 POP WorldPop Global Project
Population Data City scale
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Table 1. Cont.

Data Type Predictor Variables Unit Abbr. Raw Data Source Spatial Scale

Road network density
(For road: Line density of the
land use type within certain
circular buffer range 1; For

bus station: the total number
of stations within buffer)

Trunk
road/expressways km/km2 RD0

Spatial data layers extracted
from Open Street Map (OSM) City scale

Primary road km/km2 RD1

Secondary road km/km2 RD2

Tertiary road km/km2 RD3

Ordinary road km/km2 RD4

Bus stations – BUS

Road segment attributes
(a set of metrics commonly
used as a proxy of the road

usage and traffic distribution)

Normalized
straightness – STRAIGHT

Calculation based on network
centrality analysis

Neighborhood scale
(each road segment

corresponds to a value)

Normalized
betweenness – BETWEEN

Normalized
closeness – CLOSE

Connectivity – CONNECT

Calculation based on
Spatial Syntax

Control value – CONTROL

Mean depth – MDEPTH

Global integration – GINTEG

Local integration – LINTEG

Building morphological
data

Frontal area index 1 – FAI

Calculated from the building
dataset produced by

Ren, et al. [42]

City scale

Point-based FAI – FAIPoint Neighborhood scale

Sky view factor [0–1] SVF Neighborhood scale

Surface roughness
length m ROUGHNESS City scale

1 For this spatial predictor variable, multiple values were calculated using a series of circular buffer radius: 50 m,
100 m, 200 m, 300 m, 400 m, 500 m, 750 m, 1000 m, 1500 m, 2000 m.

2.3.1. Weather Data and Sounding Data at City Scale

Incorporating meteorological information for exposure analysis helps with explaining
the small-scale spatial variability in air pollution [43]. Particularly, incorporating inter-
polated observed wind information from a weather station network improves the model
prediction performance [44,45]. In this study, near-surface meteorological data (i.e., air tem-
perature, relative humidity, wind speed, rainfall, mean sea level pressure) were retrieved
from the Hong Kong Observatory (HKO) weather monitoring network (Figure 1). Kriging,
as one of the mostly-used geostatistical methods for meteorological applications [46], was
performed to generate spatially interpolated meteorological data layers that cover the entire
study area using a fine spatial resolution of 10 m, which is consistent with the land use
information of Hong Kong introduced in the next section.

2.3.2. Land-Use, Population, Road Network at City Scale

At the city scale, the distribution of residential zones, population density, the location
of industrial and commercial point sources, traffic-related line sources on road networks
are all factors that influence the PM2.5 spatial variability. The circular buffering method was
used for quantifying the above influential factors and creating predictor variables (e.g., the
total area of industrial zones, road network density, or population density within the
circular buffer, etc.). The predictor variables were calculated in a series of circular buffers
around the location of each long-term monitoring station. The land-use zoning information
is publicly available from the local city planning authority—Planning Department (in the
form of a land use map at 10 m resolution). The original complicated land-use zoning
was reclassified to a five-class scheme: residential zone, commercial zone, industrial zone,
governmental and facilities, greening, and open space, which makes the present study
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consistent and comparable to existing studies [24]. Spatial data of urban road networks,
location of car parks, bus stops, and other transport facilities were extracted from Open
Street Map (OSM). The population density map at 100 m resolution was derived from the
WorldPop dataset [47].

2.3.3. Road Segment Centrality and Accessibility as Proxy of Traffic Distribution

Traffic distribution is usually measured as the volume of vehicles passing through a
road segment. A higher traffic volume leads to more traffic-related pollutant emissions.
However, obtaining a full record of traffic volume that covers all road segments of a large
network usually needs intensive resources or technical input. Regression modeling has
been enlisted as a more economically feasible way of estimating traffic distribution [48,49],
in which topological measures are an essential set of predictors. The network centrality,
as a key factor of network analysis, has been used to investigate the characteristics of the
urban roadways [50] and employed in the estimation of traffic distribution [51,52]. The
Space Syntax approach is another road network topology analysis method based on the
accessibility of road segments that has been used in understanding the traffic as well [53–55].
Based on the literature, in this study, we selected and calculated three centrality metrics
and five spatial syntax metrics (as shown in Table 1) for all road segments in the study
area using the Urban Network Analysis Tool [56] and Axwoman [57], respectively. These
metrics were used as predictor variables in the neighborhood-scale modeling.

2.3.4. Building Morphological Data at Neighborhood Scale

In the highly urbanized context, urban ventilation depends largely on the geometrical
characteristics of buildings, which have a greater influence on the spatial variability of
urban pollution [58]. A previous local study found that the pollutant concentration in
street canyons had a strong and significant correlation with specific building morpholog-
ical parameters [41]. In this study, building morphological parameters at both city-scale
and neighborhood-scale were adopted for building multiscale models. At the city scale,
the frontal area index (FAI), as a commonly-used wind direction-dependent measure of
evaluating urban ventilation and a widely recognized influencing factor of air quality [59],
was calculated using the following equation:

FAI =
8

∑
θ=1

[
AF(θ)

AT
]·P(θ) (2)

where, AT is the lot area of the land parcel. AF(θ) is the total projected area along a particular
wind direction (θ) of all buildings in the land parcel. P(θ) is the wind direction probability of
the eight corresponding principal wind directions (θ). Similar to other city-scale predictor
variables, the averaged FAI value within circular buffers around each long-term monitoring
station was calculated. At the neighborhood scale, two point-based building morphological
parameters, which are sky view factor (SVF) [60] and point-based FAI [61] were calculated
for all recorded locations of the in-situ PM2.5 sampling data. SVF has been found associated
with air quality [62] and calculated in the present study by using the method proposed by
Dozier and Frew [63] which is shown in the equation below:

SVF =
1

2π

2π∫
0

[
cos β cos2 ϕ + sin β· cos(Φ − α)·(90 − ϕ − sin ϕ cos ϕ)

]
dΦ (3)

where SVF is calculated for each location of the digital surface model (DSM, a raster layer
contains elevation value of buildings and ground surface at each pixel) of sampling sites
with slope aspect α and angle β based on the horizon angles ϕ in azimuth directions Φ of
the hemisphere circle with the radius d. Point-based FAI (FAIPoint) is a fine-scale building
morphological parameter developed for the fit-for-purpose estimation of the pedestrian-
level wind speed at a high spatial resolution within urban areas [61]. Compared with
conventional computational fluid dynamics (CFD) simulation, FAIPoint is much more cost-
effective as it can estimate pedestrian-level wind speed for a large spatial extent (i.e., the



Int. J. Environ. Res. Public Health 2022, 19, 321 8 of 16

entire city) in almost real-time. Wind speed has been commonly regarded as a proxy of
pollutants concentration level in the investigation of spatial variability in exposure [64] as
stagnation of air in compact building clusters is often associated with elevated concentration
of air pollutants and increased exposure to air pollution [65,66]. FAIPoint is an extension
of FAI. Therefore, their calculation shares common ground. It is calculated using the
equation below:

FAIPoint =
s

wl [
8
∑

θ=1

AF(θ,x,y)
AT,circle

·P(θ)]dl/AT,circle

wl = [0, 1]
(4)

wl =
(

R−l
R

)c

c = 2, l = [0, 200]
(5)

where AT,circle is the circular area using a radius of R = 200 m and the location of the test
point (x, y) as the center of the circle. AF(θ,x,y) is calculated for each location in the circular
area. An exponential (c = 2) decay weighting factor (Equation (5)) is applied to represent
the decreasing effect of the roughness elements along with the increase in the distance l
between roughness elements and the test point [67].

2.4. Multiscale Land Use Regression Modeling

As mentioned in the introduction of the study, we aimed to develop a multiscale
LUR model which enables a cost-efficient geospatial estimation of small-scale intraurban
variability of intraurban air pollution for the study area. Therefore, the LUR modeling was
conducted at two different scales. First, we performed city-scale LUR modeling based on
long-term monitoring and city-scale predictors. This first stage LUR model provides an
overview of the seasonal average concentration level of PM2.5 over the spatial extent. Then,
we performed the second-stage LUR at a finer spatial scale using the in-situ PM2.5 sampling
data neighborhood-scale predictors. The second-stage LUR model explains the fine-scale
spatial variability which was used to downscale the city-scale spatial PM2.5 map from the
first stage LUR modeling.

2.4.1. City-Scale LUR Modeling and Mapping

The first stage LUR modeling provided an overview of the spatial distribution of the
four seasonal average concentration levels of PM2.5 for the city. The development of city-
scale LUR models consisted of three steps, which were (i) variable selection, (ii) regression
modeling, and (iii) spatial mapping. At this step, instead of conventional multiple linear
regression (MLR), we adopted geographically and temporally weighted regression (GTWR)
modeling by using the predictor variable subset derived above. GTWR considers spatial
and temporal variability, as it has been found that geographically weighted models perform
better than MLR in the investigation of the effects of land use on urban air pollution
variations [68–70]. The general model structure can be represented as follows:

PM2.5ij ∼
(
α0 + βij

)
+
(
α1 + βij

)
× AODij + α2ijP0ij + α3ijP1ij + · · ·+ αk+2ijPkij + ε (6)

where AODij is the observed AOD at location i on time j, which is forced to be included in
the model.

(
α0 + βij

)
is the intercept of the model.

(
α1 + βij

)
is the slope of AODij. α2ij, α3ij,

. . . , αk+2ij are the slopes for city-scale predictors P0ij, P1ij, . . . , Pkij (that are derived from
weather data, land use, population, and road network density) at location i on time j, which
are all geographically and temporally varied. ε is residuals. First, all city-scale spatial
predictor variables described in Table 1 were examined to screen out a subset of variables
that could result in the best-performing model. Generally, the selection of buffer radius
is based upon the decay correlation with the modeled pollutant [24]. The distance-decay
curve method [71] that has always been widely used so far [72,73] was adopted by the
present study to identify appropriate spatial predictor variables and the corresponding
associated buffer distance. Specifically, the buffer radius with the highest correlation
coefficient between the PM2.5 level and spatial predictor variables was identified, and
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the variables at their corresponding buffer were selected for further stepwise regression
analysis. Then, the spatial predictor variables at their optimal buffer and all temporal
variables were put together as the input for a stepwise regression analysis to derive a subset
of variables that could result in the best-performing model. In this study, the stepwise
regression yielded the following rules: (1) p-value < 0.05 for all variables included in the
model; (2) variance inflation factor (VIF) < 3 for all variables to minimize the collinearity
and overfitting issues. The predictor subset derived from the above stepwise regression
was used to build seasonal GTWR models. Finally, based on the spatiotemporal GTWR
models, we generated the seasonal averaged PM2.5 spatial map. AOD data (with an original
resolution of 1 km) was smoothed with the bilinear interpolation to keep the resolution
consistent with the land use data layers and interpolated meteorological data layers. The
modeling and mapping results are shown in Section 3.1.

2.4.2. Neighborhood-Scale LUR Modeling

To incorporate the neighborhood-scale spatial variability of PM2.5 concentration, we
further developed the second stage LUR model using the data from in-situ sampling at
the ten sites (refers to Section 2.2.3). All neighborhood-scale spatial variables (mentioned
in Table 1) were used as predictors. The same variable selection method and criteria used
in the first stage modeling were also adopted here. Instead of predicting the absolute
value of in-situ sampling PM2.5 data, the neighborhood-scale LUR modeling focused on
investigating the variation among different points in a site. Therefore, the variation in
PM2.5 (∆PM2.5) was used as the response variable. ∆PM2.5 is the difference between the
measured PM2.5 concentration at a point and the site averaged PM2.5 (which is the mean
of all measurement points in the entire site). The ∆PM2.5 value will be positive if the
measured concentration at a point is higher than the site average, vice versa. The model
structure is as follows:

∆PM2.5 ∼ β + α1P1 + α2P2 + α3P3 + · · ·+ αnPn + ε (7)

where α1, α2, . . . , αn are the slopes for city-scale predictors P1, P2, . . . , Pn. As to the regres-
sion modeling, we used MLR instead of GTWR for the development of the neighborhood-
scale model, as the in-situ PM2.5 sampling data mainly reflects the microscale effect. The
microscale effect that happens in street canyons depends on the environmental condition of
the specific road segment, which is supposed to be geolocation-independent. The ∆PM2.5
was calculated for all road segments. A road segment was treated as a line segment for the
calculation of centrality and accessibility (described in Section 2.3.3), and the calculated
values were spatially assigned to all locations within the street canyon corresponding to
the road segment in the process of spatial mapping. As the model estimates the variation in
PM2.5 instead of the absolute concentration value, the resultant map had a data distribution
across positive and negative. It is important to note that the regression model is only valid
within the spatial range of road and street area (the centrality and accessibility variables
representing traffic were only calculated at the road network) and the numerical range of
input predictor variables (no “extrapolation” [74] was done for the model to reduce the
uncertainty). The resultant map reflects the variation at a finer spatial scale, but it does not
have full spatial coverage of the city. The valid part of PM2.5 variability estimation was
overlayed together with the city-scale PM2.5 map from Section 2.4.1 in order to provide the
final PM2.5 concentration map.

3. Results
3.1. City-Scale LUR Modeling and Mapping Results

The section reports the results from the first stage city-scale LUR. The LUR results
include the resultant GTWR models and the seasonal maps of PM2.5. The structures of the
four seasonal GTWR models are shown in Table 2, respectively. The estimation maps and
corresponding regression plots are shown in Figure 2. The predictor variables selected by
stepwise regression mainly reflect features that affect the PM2.5 level from the following
three aspects: spatial location, built environment density, meteorological condition. For
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GTWR models, the coefficients were geographically and temporally varied (please refer
to Table S4 of the supplementary material). AICc was calculated, which is the corrected
version of the Akaike information criterion (AIC) [75]. Leave-one-out cross-validation (CV)
which is commonly used for GWR-based model validation [76], was also performed to
validate the model performance.

Table 2. Summary of the resultant GTWR model structures. The math operators before each predictor
variable indicate its correlation with PM2.5. “+” indicates a positive correlation; “−” indicates a
negative correlation. Model coefficients are shown in Table S4 of the supplementary material.

Season Model Structure R2 R2 CV R2 AICc

Spring PM2.5 ~ AOD − LONG + KINX − PWAT 0.881 0.835 0.831 206.368
Summer PM2.5 ~ AOD + FAI250 + LAT − KINX − PWAT 0.566 0.504 0.497 445.211

Fall PM2.5 ~ AOD + RES500 + BUS400 + TEMP − WSPD + KINX − PWAT 0.772 0.694 0.673 1145.994
Winter PM2.5 ~ AOD − LONG + ROUGHNESS50 + CINV + LCLP + LFCV + VTOT 0.898 0.853 0.846 579.051

Annual A piecewise linear function is the combination of four seasonal models.
Only one of the four models will be selected based on the time. 0.798 0.792 N.A. N.A.
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Figure 2. The four resulting maps of seasonal average and the map of the annual average of
PM2.5 concentration level. The concentration value of 35 µg/m3 is the annual limit in Air Quality
Objectives (AQOs) set out by the Air Pollution Control Ordinance (Cap. 311) of Hong Kong. The
inset picture at the bottom right corner shows the actual predicted plot of the resulting models of
PM2.5 concentration level.

3.2. Neighborhood-Scale LUR Modeling Results

The neighborhood-scale regression modeling was conducted by following the steps
as stated in Section 2.4.2. The model structure and predictor coefficients are shown in
Table 3. The model had a performance of R2 = 0.508, with all predictor variables having
VIF < 4. The numerical range and summary statistics of input predictor variables of the
neighborhood-scale LUR model are shown in Table S5 of the Supplementary Material.
Figure 3 shows the zoom-in city-scale resulting PM2.5 map of the downtown area with
estimated fine-scale variability in PM2.5 (∆PM2.5) overlayed. More details of road space
PM2.5 spatial variability are reflected.
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Table 3. Summary of the resultant neighborhood-scale regression model.

Predictor Variables Coefficients Significant Level VIF

Intercept −2.925 × 10−1 <0.0001
Normalized betweenness 1.431 × 102 <0.0001 1.009

Normalized closeness 3.074 × 105 <0.0001 3.332
Control value −1.675 × 10−1 <0.0001 2.050

Global integration 3.749 <0.0001 3.657
Sky view factor −1.263 × 101 <0.0001 1.959
Point-based FAI 2.826 <0.0001 1.716
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4. Discussion
4.1. At the City-Scale

Built environment density determines the pollution emission as a denser area usually
has a large population, and also affects the pollutant dispersal as the buildings alter the
wind flow in the city. Indeed, a few studies indicate that a higher population density could
mediate the balance between the usage of private and public transport [77], foster the
implementation of cleaner technology [78], thereby reducing pollution emission. However,
in most cases, evidence still shows that high population density is a main factor driving
the accumulation of air pollution [79,80], which seems to be more in line with common
perceptions. Such perception also appeared in the results of the present study. A statistically
significant positive correlation between PM2.5 and residential land use area as well as
the number of bus stops was observed in the resultant GTWR models. Spatial location,
as another influential aspect, also showed in most models. Longitude was negatively
correlated with PM2, while the correlation was opposite for Latitude. Such a pattern
indicates a higher level of PM2.5 at northwest territories of Hong Kong, which represents
the well-known air quality impact at the regional level [40]. The seasonal spatial maps
also clearly showed the seasonal variability (Figure 2) [81]. The FAI calculated within a
buffer radius of 250 m was identified as a major influential factor during summertime,
which indicates the dominant effect of local building density and geometrical factors on the
pollution dispersal in summer. Similar findings are also shown in other CFD simulation-
based studies on the relationship between urban form and air pollution [82]. The critical
buffer radius of 250 m for FAI is consistent with the findings from a previous study based on
the long-term mobile ground-level air quality monitoring using the public transport vehicle
platform [19]. The meteorological condition was also influential. Upper-air sounding
indices related to atmospheric stability showed up in all seasonal models and shared the
same relationship where higher atmospheric instability corresponded to a lower level of
pollution concentration, vice versa. The reasonable explanation of the statistical model
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based on theoretical fundamental indicates the interpretability of the models. Compared
with the annual model performance (R2 = 0.72) in our previous study on calibrating the
AOD-PM2.5 relationship [68], the city-scale LUR model achieved better overall prediction
performance (R2 = 0.80). Such a result further supports the conclusions of previous studies
that the MODIS collection 6 MAIAC algorithm is more suitable than the 3 km MODIS AOD
product for intraurban air quality studies [83]. Comparison between the present study
results and the previous study results using 3 km MODIS also showed that the long-term
PM2.5 concentration in Hong Kong during the period of 2018 to 2019 dropped by 46%
compared to the years of 2003-2015 (with a reduction in annual average PM2.5 over the
spatial extent of the entire city from 45.8 µg/m3 to 24.5 µg/m3). This reduction indicates
the effectiveness and necessity of regional cooperative actions in air pollution control [84].

4.2. At the Neighborhood-Scale

In our previous study on calibrating the AOD-PM2.5 relationship [68], we mixed and
put all predictor variables at various spatial scales into one single model. Although the
previous models achieved moderate prediction performance, the models may still ignore the
differences in the influence of predictors at various spatial scales on the dependent variables.
The PM2.5 variations we captured during the in-situ sampling data are mainly determined
by the environmental condition of the road segment. Therefore, the neighborhood-scale
PM2.5 variation is supposed to be largely geolocation-independent, and thus should be
investigated separately. In the present study, point-based building morphological indices
were included in the model. It was found that point-based building morphological indices
and road network centrality and accessibility metrics as predictors explained more than
50% of the variability in the in-situ PM2.5 sampling data. As indicated by the results shown
in Table 3, road segments with higher connectivity and accessibility were found to be
correlated to a higher level of PM2.5 concentration, as they usually hold more commercial
activities and generally serve a larger traffic volume. The model also indicated that locations
with higher openness generally correspond to lower levels of PM2.5 concentrations.

4.3. Limitations and Future Work

There is a limitation on AOD data filtering which should be noticed. As mentioned in
Section 2.2.1, the AOD data used in this study is the MAIAC AOD. It has a finer resolution
compared with the 3-km MODIS dataset but has more unusable pixels after applying the
AOD quality filter. Usually, the QA filter “Best quality”, which combines the two filters:
QA.CloudMask = “Clear” and QA.AdjacencyMask = “Clear”, should be used for most
cases [31]. In this study, pixels with the filter of QA.CloudMask = “Possibly cloudy” were
used to avoid the possible retrieval issue over certain urban areas [32]. In addition, pixels
with the filter of QA for AOD = “AOD within ±2 km from the coastline” were retained to
extend the spatial coverage of prediction. The above filtering scheme possibly introduced
unreliable AOD data to the models. In that case, future work should focus on evaluating the
uncertainties of the model. Moreover, future work might also be conducted in other testbed
cities, which could acquire data outside the present study area and externally validate
the present modeling and mapping results. Currently, the GTWR models are developed
separately for different seasons. In future work, the model could be developed for various
weather types by classifying meteorological conditions of pollutant dispersal. Another
limitation of the present study is that the traffic was considered by introducing road network
topological measures as the proxy. Although such methods have been employed by existing
transport studies, using the traffic volume data from a computational traffic simulation
conducted by transport engineers could significantly reduce the uncertainties and increase
the neighborhood-scale regression model performance. Moreover, the regression model is
only valid within the numerical range of input predictor variables as no model extrapolation
was performed. Therefore, the estimation of neighborhood-scale PM2.5 variability does not
have full spatial coverage of the city.
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5. Conclusions

Investigating the multiscale complexity of spatial variability in air pollution is challeng-
ing, especially in compactly built environments. In this study, we tackled such multiscale
complexity in the spatial variability of air pollution affecting pedestrian exposure levels
by conducting in-situ sampling and multiscale LUR modeling of PM2.5, in the testbed city
Hong Kong. Using the land-use regression (LUR) modeling technique as the fundamental
method, air quality data, satellite data, meteorological data, and spatial data from multiple
sources were integrated. We used a different strategy from existing LUR and AOD-PM2.5
research, which was to conduct the modeling at city- and neighborhood scales indepen-
dently and examine the predictor variables at the two scales separately. At the city scale,
the model developed in the present study obtained better prediction performance in the
exploration of the AOD-PM2.5 relationship when compared with previous studies. At
neighborhood scale, the point-based building morphological indices and road network
centrality and accessibility metrics were found to be fit-for-purpose indicators of PM2.5
spatial estimation. The resultant PM2.5 map was developed by combining the models from
the two scales. The map offers an estimation of intraurban variability of air pollution which
facilitates local public health research. More importantly, working with practitioners and
stakeholders, it is possible to convert the building morphological factors to urban plan-
ning and design language which could be incorporated into existing practice guidelines.
Therefore, the quantitative information on the relationship between spatial predictors (e.g.,
building morphological factors) and PM2.5 concentration level derived from the models
are interpretable and transferable to evidence-based strategies for the improvement in the
built environment. This will enable knowledge transfer and potentially could inform the
strategic planning direction of “planning for a livable high-density city” which is defined in
the governmental initiative of planning vision and strategy of “Hong Kong 2030 +” by the
Planning Department of Hong Kong [85]. More importantly, the methods and workflows
proposed by the research have worldwide applicability, as all the necessary input data are
not difficult to acquire in most regions.
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summary statistics of input predictor variables of the neighborhood scale LUR model.
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